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Membership Deformation of Commutativity

and Obscure n-ary Algebras

Steven Duplij

A general mechanism for “breaking” commutativity in algebras is pro-
posed: if the underlying set is taken to be not a crisp set, but rather an ob-
scure/fuzzy set, the membership function, reflecting the degree of truth that
an element belongs to the set, can be incorporated into the commutation re-
lations. The special “deformations” of commutativity and ε-commutativity
are introduced in such a way that equal degrees of truth result in the “non-
deformed” case. We also sketch how to “deform” ε-Lie algebras and Weyl
algebras. Further, the above constructions are extended to n-ary algebras
for which the projective representations and ε-commutativity are studied.
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1. Introduction

Noncommutativity is the main mathematical idea of modern physics which,
on the one hand, is grounded in quantum mechanics, in which generators of the
algebra of observables do not commute, and, on the other hand, in supersymme-
try and its variations based on the graded commutativity concept. Informally,
“deformation” of commutativity in algebras is mostly a special way to place a
“scalar” multiplier from the algebra field before the permuted product of two ar-
bitrary elements. The general approach is based on the projective representation
theory and realized using almost commutative (ε-commutative) graded algebras,
where the role of the multipliers is played by bicharacters of the grading group
(as suitable “scalar” objects taking values in the algebra field k).

Here we propose a principally new mechanism for “deformation” of commu-
tativity which comes from incorporating the ideas of vagueness in logic [22] to
algebra. First, take the underlying set of the algebra not as a crisp set, but as an
obscure/fuzzy set [23]. Second, consider an algebra (over k = C), such that each
element can be endowed with a membership function (representing the degree
of truth), a scalar function that takes values in the unit interval and describes
the containment of a given element in the underlying set [5]. Third, introduce
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a special “membership deformation” of the commutation relations, so to speak
the difference of the degree of truth, which determines a “measure of noncom-
mutativity”, whereby the elements having equal membership functions commute.
Such procedure can be also interpreted as the “continuous noncommutativity”,
because the membership function is usually continuous. Likewise we “deform”
ε-commutativity relations and ε-Lie algebras [20, 21]. Then we universalize and
apply the above constructions to n-ary algebras [17] for which we also study
projective representations generalizing the binary ones [27].

2. Preliminaries

First recall the main features of the standard gradation concept and of gen-
eralized (almost) commutativity (or ε-commutativity) [20,21].

Let k be a unital field (with unit 1 ∈ k and zero 0 ∈ k) andA = 〈A | ·,+〉 be an
associative algebra over k having zero z ∈ A and unit e ∈ A (for unital algebras).
A graded algebra AG (G-graded k-algebra) is a direct sum of subalgebras AG =⊕

g∈GAg, where G = 〈G | +′〉 is a grading group (an abelian (finite) group with
“unit” 0 ∈ G) and the set multiplication is (“respecting gradation”)

Ag ·Ah ⊆ Ag+′h, g, h ∈ G. (2.1)

The elements of subsets a = a(g) ∈ Ag with “full membership”are G -
homogeneous of degree g

g ≡ deg
(
a(g)
)

= deg (a) = a′(g) ≡ a
′ ∈ G, a = a(g) ∈ Ag. (2.2)

The graded algebra AG is called a cross product if in each subalgebra Ag
there exists at least one invertible element. If all nonzero homogeneous elements
are invertible, then AG is called a graded division algebra [8]. The morphisms
ϕ : AG → BG acting on homogeneous elements from Ai should be compatible
with the grading ϕ (Ag) ⊂ Bg, g ∈ G, while kerϕ is a homogeneous ideal. The
category of binary G-graded algebras G-Alg consists of the corresponding class
of algebras and the homogeneous morphisms (see, e.g., [4, 8]).

In binary graded algebras there exists a way to generalize noncommutativity
such that it can be dependent on the gradings (“coloring”). Indeed, some (two-
place) function on grading degrees (bicharacter), a (binary) commutation factor
ε(2) : G×G→ k× (where k× = k \ 0) can be introduced [20,21] as

a · b = ε(2)
(
a′, b′

)
b · a, a, b ∈ A, a′, b′ ∈ G. (2.3)

The properties of the commutation factor ε(2) under double permutation and
associativity

ε(2)
(
a′, b′

)
ε(2)

(
b′, a′

)
= 1, (2.4)

ε(2)
(
a′, b′ + c′

)
= ε(2)

(
a′, b′

)
ε(2)

(
a′, c′

)
, (2.5)

ε(2)
(
a′ + b′, c′

)
= ε(2)

(
a′, c′

)
ε(2)

(
b′, c′

)
, a′, b′, c′ ∈ G, (2.6)
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make ε(2) a special 2-cocycle on the group G [4]. The conditions (2.4)–(2.6) imply

that ε(2) (a′, b′) 6= 0,
(
ε(2) (a′, a′)

)2
= 1, ε(2) (a′, 0) = ε(2) (0, a′) = 1, and 0 ∈ G.

A graded algebra AG endowed with the commutation factor ε(2) satisfying (2.3)–
(2.6) is called an almost commutative (ε(2)-commutative, color) algebra [20, 21]
(for a review, see [10]).

The simplest example of a commutation factor is a sign rule

ε(2)
(
a′, b′

)
= (−1)〈a

′,b′〉 , (2.7)

where 〈·, ·〉 : G × G → Z2 is a bilinear form (“scalar product”), and for G = Z2

the form is a product, i.e. 〈a′, b′〉 = a′b′ ≡ gh ∈ Z2. This gives the standard
supercommutative algebra [3, 15,19].

In the case G = Zn2 , the “scalar product” 〈·, ·〉 : G×G→ Z is defined by (see
(2.2))〈 (

a′1 . . . a
′
n

)
,
(
b′1 . . . b

′
n

) 〉
= a′1b

′
1 + . . .+ a′nb

′
n ≡ g1h1 + . . .+ gnhn ∈ Z, (2.8)

which leads to Zn2 -commutative associative algebras [7].
A classification of the commutation factors ε(2) can be made in terms of the

factors, binary Schur multipliers, π(2) : G×G→ k× such that [21,26]

ε(2)π
(
a′, b′

)
=
π(2) (a′, b′)

π(2) (b′, a′)
, a′, b′ ∈ G. (2.9)

The (Schur) factors π(2) naturally appear in the projective representation
theory [27] and satisfy the relation

π(2)
(
a′, b′ + c′

)
π(2)

(
b′, c′

)
= π(2)

(
a′, b′

)
π(2)

(
a′ + b′, c′

)
, a′, b′ ∈ G, (2.10)

which follows from associativity. Using (2.9), we can rewrite the ε(2)-commutation
relation (2.3) of the graded algebra AG in the form

π(2)
(
b′, a′

)
a · b = π(2)

(
a′, b′

)
b · a, a, b ∈ A, a′, b′ ∈ G. (2.11)

We call (2.11) a π-commutativity. A factor set
{
π
(2)
sym

}
is symmetric if

π(2)sym

(
b′, a′

)
= π(2)sym

(
a′, b′

)
, (2.12)

ε(2)πsym
(
a′, b′

)
= 1, a′, b′ ∈ G, (2.13)

and thus the graded algebra AG becomes commutative.
For further details, see Section 5 and [20,21].

3. Membership function and obscure algebras

Now let us consider a generalization of associative algebras and graded al-
gebras to the case where the degree of truth (containment of an element in the
underlying set) is not full or distinct (for a review, see, e.g., [23, 25]). In this
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case, an element a ∈ A of the algebra A = 〈A | ·,+〉 , over k, can be endowed
with an additional function, the membership function µ : A → [0, 1], 0, 1 ∈ k,
which “measures” the degree of truth as a “grade of membership” [5]. If A is a
crisp set, then µ ∈ {0, 1} and µcrisp (a) = 1 if a ∈ A and µcrisp (a) = 0 if a /∈ A.
Also, we assume that the zero has full membership µ (z) = 1, z ∈ A (for details,
see, e.g., [23, 25]). If the membership function µ is positive, we can identify an
obscure (fuzzy) set A(µ) with support the universal set A consisting of pairs

A(µ) = {(a|µ (a))} , a ∈ A,µ (a) > 0. (3.1)

Sometimes, instead of the operations with obscure sets it is convenient to
consider the corresponding operations only in terms of the membership function
µ itself. Denote a ∧ b = min {a, b}, a ∨ b = max {a, b}. Then, for inclusion ⊆,
union ∪, intersection ∩ and negation of obscure sets, one can write µ (a) ≤ µ (b),
µ (a) ∨ µ (b), µ (a) ∧ µ (b), 1− µ (a), a, b ∈ A(µ), respectively.

Definition 3.1. An obscure algebra A (µ) =
〈
A(µ) | ·,+

〉
is an algebra over

k having an obscure set A(µ) as its underlying set, where the following conditions
hold:

µ (a+ b) ≥ µ (a) ∧ µ (b) , (3.2)

µ (a · b) ≥ µ (a) ∧ µ (b) , (3.3)

µ (ka) ≥ µ (a) , a, b ∈ A, k ∈ k. (3.4)

Definition 3.2. An obscure unity η is given by η (a) = 1 if a = 0, and
η (a) = 0 if a 6= 0.

For two obscure sets their direct sum A(µ) = A(µg)⊕ A(µh) can be defined
if µg ∧ µh = η and the joint membership function has two “nonintersecting”
components

µ (a) = µg
(
a(g)
)
∨ µh

(
a(h)

)
, µg ∧ µh = η, (3.5)

a = a(g) + a(h), a ∈ A(µ), a(g) ∈ A(µg), a(h) ∈ A(µh), g, h ∈ G, (3.6)

satisfying

µ
(
a(g) · a(h)

)
≥ µg

(
a(g)
)
∧ µh

(
a(h)

)
. (3.7)

Definition 3.3. An obscure G-graded algebra is a direct sum decomposition

AG (µ) =
⊕

g∈G
A (µg) (3.8)

such that the relation (2.1) holds and the joint membership function is

µ (a) = ∨
g∈G

µg
(
a(g)
)
, a =

∑
g∈G

a(g), a ∈ A(µ), a(g) ∈ A(µg), g ∈ G. (3.9)
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4. Membership deformation of commutativity

The membership concept leads to the question whether it is possible to gen-
eralize commutativity and ε(2)-commutativity (2.3) for the obscure algebras. A
positive answer to this question can be based on a consistent usage of the mem-
bership µ as ordinary functions which are pre-defined for each element and satisfy
some conditions (see, e.g., [23, 25]). In this case, the commutation factor (and
the Schur factors) may depend not only on the element grading, but also on the
element membership function µ, and therefore it becomes “individual” for each
pair of elements, and moreover it can be continuous. We call this procedure a
membership deformation of commutativity.

4.1. Deformation of commutative algebras Let us consider an obscure
commutative algebra A (µ) =

〈
A(µ) | ·,+

〉
(see Definition 3.1), in which a · b =

b · a, a, b ∈ A(µ). Now we “deform” this commutativity by the membership
function µ and introduce a new algebra product (∗) for the elements in A to get
a noncommutative algebra.

Definition 4.1. An obscure membership deformed algebra is A∗ (µ) =〈
A(µ) | ∗,+

〉
in which the noncommutativity relation is

µ (b) a ∗ b = µ (a) b ∗ a, a, b ∈ A(µ). (4.1)

Remark 4.2. The relation (4.1) is a reminiscent of (2.11), where the role of
the Schur factors is played by the membership function µ which depends on the
element itself, but not on the element grading. Therefore, the membership defor-
mation of commutativity (4.1) is highly nonlinear as opposed to the gradation.

As in our consideration the membership function µ cannot be zero, it follows
from (4.1) that

a ∗ b = ε(2)µ (a, b) b ∗ a, (4.2)

ε(2)µ (a, b) =
µ (a)

µ (b)
, a, b ∈ A(µ), (4.3)

where ε
(2)
µ is the membership commutation factor.

Corollary 4.3. An obscure membership deformed algebra A∗ (µ) is a (kind
of) εµ-commutative algebra with a membership commutation factor (4.3) which
now depends not on the element gradings as in (2.9), but on the membership
function µ.

Remark 4.4. As can be seen from (4.3), the noncommutativity “measures”
the difference between the element degree of truth and A(µ). So, if two elements
have the same membership function, they commute.

Proposition 4.5. In A∗ (µ) , the membership function satisfies the equality
(cf. (3.4))

µ (ka) = µ (a) , a ∈ A(µ), k ∈ k. (4.4)
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Proof. From the distributivity of the scalar multiplication k (a ∗ b) = ka∗b =
a ∗ kb and the membership noncommutativity (4.1), we get

µ (b) ka ∗ b = µ (ka) b ∗ ka, (4.5)

µ (kb) a ∗ kb = µ (a) kb ∗ a. (4.6)

So, µ (ka)µ (kb) = µ (a)µ (b), a ∈ A(µ), k ∈ k, and thus (4.4) follows.

In general, the algebra A∗ (µ) is not associative without further conditions
(for instance, similar to (2.10)) on the membership function µ which is assumed
predefined and satisfies the properties (3.2)–(3.3) and (4.4) only.

Proposition 4.6. The obscure membership deformed algebra A∗ (µ) cannot
be associative with any additional conditions on the membership function µ.

Proof. Since the ε-commutativity (2.3) and the ε-commutativity (4.2) have
the same form, the derivations of associativity coincide and give a cocycle relation

similar to (2.5)–(2.6) also for ε
(2)
µ , e.g.,

ε(2)µ (a, b ∗ c) = ε(2)µ (a, b) ε(2)µ (a, c) . (4.7)

This becomes µ (a) = µ (b)µ (c)�µ (b ∗ c) in terms of the membership function
(4.3), but it is impossible for all a, b, c ∈ A(µ). On the other side, after double
commutation in (a ∗ b) ∗ c → c ∗ (b ∗ a) and a ∗ (b ∗ c) → (c ∗ b) ∗ a we obtain (if
the associativity of (∗) is implied)

ε(2)µ (a, b ∗ c) ε(2)µ (b, c) = ε(2)µ (a ∗ b, c) ε(2)µ (a, b) , (4.8)

which in terms of the membership function becomes µ (b)2 = µ (a ∗ b)µ (b ∗ c),
and this is also impossible for arbitrary a, b, c ∈ A(µ).

Nevertheless, distributivity of the algebra multiplication and algebra addition
in A∗ (µ) is possible, but can only be one-sided.

Proposition 4.7. The algebra A∗ (µ) is right-distributive, but has the mem-
bership deformed left distributivity

µ (b+ c) a ∗ (b+ c) = µ (b) a ∗ b+ µ (c) a ∗ c, (4.9)

(b+ c) ∗ a = b ∗ a+ c ∗ a, a, b, c ∈ A(µ). (4.10)

Proof. Applying the membership noncommutativity (4.1) to (4.9), we obtain
µ (a) (b+ c) ∗ a = µ (a) b ∗ a+ µ (a) c ∗ a, and then (4.10), because µ > 0.

Theorem 4.8. The binary obscure algebra A∗ (µ) =
〈
A(µ) | ∗,+

〉
is nec-

essarily nonassociative and ε
(2)
µ -commutative (4.2), right-distributive (4.10) and

membership deformed left distributive (4.9).
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Remark 4.9. If membership noncommutativity is valid for generators of the
algebra only, then the form of (4.2) coincides with that of the quantum polynomial
algebra [1], but the latter is two-sided distributive, in distinction to the obscure
algebra A∗ (µ).

Example 4.10 (Deformed Weyl algebra). Consider an obscure algebra

AWeyl
� (µ) =

〈
A(µ) | �,+

〉
generated by two generators x, y ∈ A(µ) satisfying the Weyl-like relation (cf.
(4.1))

µ (y)x� y = µ (x) y � x+ µ (x� y) e, x, y, e ∈ A(µ). (4.11)

We call AWeyl
� (µ) a membership deformed Weyl algebra. Because the member-

ship function is predefined and µ (x� y) is not a symplectic form, the algebra

AWeyl
� (µ) is not isomorphic to the ordinary Weyl algebra (see, e.g., [16]). In the

same way, the graded Weyl algebra [24] can be membership deformed in a similar
way.

Remark 4.11. The special property of the membership noncommutativity is
the fact that each pair of elements has their own “individual” commutation factor
ε which depends on the membership function (4.3) that can also be continuous.

4.2. Deformation of ε-commutative algebras. Here we apply the mem-
bership deformation procedure (4.1) to the obscure G-graded algebras (3.8) which
are ε(2)-commutative (2.3). We now “deform” (2.11) by analogy with (4.1).

Let AG (µ) be a binary obscure G-graded algebra (3.8) which is ε(2)-
commutative with the Schur factor π(2) (2.9).

Definition 4.12. An obscure membership deformed ε(2)-commutative G-
graded algebra is AG? (µ) =

〈
A(µ) | ?,+

〉
in which the noncommutativity relation

is given by

µ (b)π(2)
(
b′, a′

)
a ? b = µ (a)π(2)

(
a′, b′

)
b ? a, a, b ∈ A(µ), a′, b′ ∈ G. (4.12)

Both functions π(2) and µ being nonvanishing, we can combine (2.9) and (4.3).

Definition 4.13. An algebraAG? (µ) is called a double ε
(2)
π /ε

(2)
µ -commutative

algebra when

a ? b = ε(2)π
(
a′, b′

)
ε(2)µ (a, b) b ? a, a, b ∈ A(µ), a′, b′ ∈ G (4.13)

ε(2)µ (a, b) =
µ (a)

µ (b)
, (4.14)

ε(2)π
(
a′, b′

)
=
π(2) (a′, b′)

π(2) (b′, a′)
, (4.15)

where ε
(2)
π is the grading commutation factor and ε

(2)
µ is the membership commu-

tation factor.
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In the first version, we assume that ε
(2)
π is still a cocycle and satisfies (2.4)–

(2.6). Then in AG? (µ) the relation (4.4) is satisfied as well, because the Schur
factors cancel in the derivation from (4.5)–(4.6). For the same reason Assertion

4.6 holds, and therefore the double ε
(2)
π /ε

(2)
µ -commutative algebra AG? (µ) with

the fixed grading commutation factor ε
(2)
π is necessarily nonassociative.

As the second version, we consider the case when the grading commutation
factor does not satisfy (2.4)–(2.6), but the double commutation factor does satisfy
them (the membership function is fixed, being predefined for each element), which
can lead to an associative algebra.

Proposition 4.14. A double ε
(2)
πµ/ε

(2)
µ -commutative algebra

AG~ (µ) =
〈
A(µ) | ~,+

〉
with

a~ b = ε(2)πµ
(
a′, b′

)
ε(2)µ (a, b) b~ a, ε(2)µ (a, b) =

µ (a)

µ (b)
(4.16)

is associative if the noncocycle commutation factor ε
(2)
πµ satisfies the “membership

deformed cocycle-like” conditions

ε(2)πµ
(
a′, b′

)
ε(2)πµ

(
b′, a′

)
=

1

ε
(2)
µ (a, b) ε

(2)
µ (b, a)

, (4.17)

ε(2)πµ
(
a′, b′ + c′

)
= ε(2)πµ

(
a′, b′

)
ε(2)πµ

(
a′, c′

) ε(2)µ (a, b) ε
(2)
µ (a, c)

ε
(2)
µ (a, b~ c)

, (4.18)

ε(2)πµ
(
a′ + b′, c′

)
= ε(2)πµ

(
a′, c′

)
ε(2)πµ

(
b′, c′

) ε(2)µ (a, c) ε
(2)
µ (b, c)

ε
(2)
µ (a~ b, c)

, (4.19)

for all a, b ∈ A(µ) and a′, b′ ∈ G.

Proof. Now indeed the double commutation factor (the product of the grading

and membership factors) ε
(2)
πµε

(2)
µ satisfies (2.4)–(2.6). Then (4.17)–(4.19) imme-

diately follow.

We can find the deformed equation for the Schur-like factors (similar to (4.17)–
(4.19))

ε(2)πµ
(
a′, b′

)
=
π
(2)
µ (a′, b′)

π
(2)
µ (b′, a′)

, (4.20)

such that the following “membership deformed” commutation takes place (see
(4.16)):

π(2)µ

(
b′, a′

)
µ (b) a~ b = π(2)µ

(
a′, b′

)
µ (a) b~ a, a, b ∈ A(µ), a′, b′ ∈ G, (4.21)

and the algebra AG~ (µ) becomes associative in distinct with (4.12), where the

grading commutation factor ε
(2)
π satisfies (2.4)–(2.6) and the algebra multiplica-

tions (?) are different.
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Thus the deformed binary Schur-like factors π
(2)
µ of the obscure membership

deformed associative double commutative algebra AG~ (µ) satisfy

π(2)µ

(
a′, b′ + c′

)
π(2)µ

(
b′, c′

)
= π(2)µ

(
a′, b′

)
π(2)µ

(
a′ + b′, c′

) µ (a~ b)

µ (b)
, (4.22)

for all a, b ∈ A(µ) and a′, b′ ∈ G, which should be compared with the corresponding
nondeformed relation (2.10).

4.3. Double εε-Lie algebras. Consider the second version of an obscure

double ε
(2)
πµ/ε

(2)
µ -commutative algebra AG~ (µ) defined in (4.16)–(4.19) and con-

struct a corresponding analog of the Lie algebra by following the same procedure
as for associative ε-commutative algebras [18,20,21].

Take AG~ (µ) and define a double εε-Lie bracket Lεε : A(µ) ⊗ A(µ) → A(µ) by

Lεε [a, b] = a~ b− ε(2)πµ
(
a′, b′

)
ε(2)µ (a, b) b~ a, a, b ∈ A(µ), a′, b′ ∈ G, (4.23)

where ε
(2)
πµ and ε

(2)
µ are given in (4.16) and (4.20), respectively.

Proposition 4.15. The double εε-Lie bracket is εε-skew commutative, i.e. it

satisfies double commutativity with the commutation factor
(
−ε(2)πµε(2)µ

)
.

Proof. Multiply (4.23) by ε
(2)
πµ (b′, a′) ε

(2)
µ (b, a) and use (4.17) to obtain

ε(2)πµ
(
b′, a′

)
ε(2)µ (b, a) Lεε [a, b] = ε(2)πµ

(
b′, a′

)
ε(2)µ (b, a) a~ b− b~ a = −Lεε [b, a] .

Therefore,

Lεε [a, b] = −ε(2)πµ
(
a′, b′

)
ε(2)µ (a, b) Lεε [b, a] , (4.24)

which should be compared with (4.16).

Proposition 4.16. The double εε-Lie bracket satisfies the membership de-
formed εε-Jacobi identity

ε(2)πµ
(
a′, b′

)
ε(2)µ (a, b) Lεε [a,Lεε [b, c]] + cyclic permutations = 0,

a, b, c ∈ A(µ), a′, b′, c′ ∈ G. (4.25)

Definition 4.17. A double εε-Lie algebra is an obscure G-graded algebra
with the double εε-Lie bracket (satisfying the εε-skew commutativity (4.24)
and the membership deformed Jacobi identity (4.25)) as a multiplication, i.e.
AGL (µ) =

〈
A(µ) | Lεε,+

〉
.

5. Projective representations

To generalize the ε-commutative algebras to the n-ary case, we need to intro-
duce n-ary projective representations and study them in brief.
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5.1. Binary projective representations. First, recall some general prop-
erties of the Schur factors and corresponding commutation factors in the projec-
tive representation theory of Abelian groups [26,27] (see also [14] and the unitary
ray representations in [2]). We show some known details in our notation which
can be useful in further extensions of the well-known binary constructions to the
n-ary case.

Let H(2) = 〈H | u〉 be a binary Abelian group and f : H(2) → E(2) ,
where E(2) = 〈EndV | ◦〉, and V is a vector space over a field k. A map f is
a (binary) projective representation (σ-representation [26]) if f (x1) ◦ f (x2) =

π
(2)
0 (x1, x2) f (x1 u x2), x1, x2 ∈ H, and π

(2)
0 : H(2) × H(2) → k× is a (Schur)

factor, while (◦) is a (noncommutative binary) product in EndV ). The “associa-
tivity relation” of factors follows immediately from the associativity of (◦) such
that (cf. (2.10))

π
(2)
0 (x1, x2 u x3)π

(2)
0 (x2, x3) = π

(2)
0 (x1, x2)π

(2)
0 (x1 u x2, x3) ,

x1, x2, x3 ∈ H. (5.1)

Two factor systems are equivalent
{
π
(2)
0

}
λ∼
{
π̃
(2)
0

}
(or associated [27]) if

there exists λ : H(2) → k× such that

π̃
(2)
0 (x1, x2) =

λ (x1)λ (x2)

λ (x1 u x2)
π
(2)
0 (x1, x2) , x1, x2 ∈ H, (5.2)

and the π̃
(2)
0 -representation is given by f̃ (x) = λ (x) f (x), x ∈ H. The cocycle

condition (5.1) means that π
(2)
0 belongs to the group Z2

(
H(2), k×

)
of 2-cocycles of

H(2) over k×, the quotient
{
π
(2)
0

}
/
λ∼ gives the corresponding multiplier group, if

k = C, and, in the general case, coincides with the exponents of the 2-cohomology
classes H2

(
H(2), k

)
(for details, see, e.g., [10, 26,27]).

The group H(2) is Abelian, and therefore we have (cf. (2.11))

π
(2)
0 (x2, x1) f (x1) ◦ f (x2) = π

(2)
0 (x2, x1)π

(2)
0 (x1, x2) f (x1 u x2)

= π
(2)
0 (x1, x2) f (x2) ◦ f (x1) , (5.3)

which allows us to introduce a (binary) commutation factor ε
(2)
π0 : H(2) ×H(2) →

k× by (see (2.3), (2.9))

ε(2)π0 (x1, x2) =
π
(2)
0 (x1, x2)

π
(2)
0 (x2, x1)

, (5.4)

f (x1) ◦ f (x2) = ε(2)π0 (x1, x2) f (x2) ◦ f (x1) , x1, x2 ∈ H, (5.5)

with the obvious “normalization” (cf. (2.4))

ε(2)π0 (x1, x2) ε
(2)
π0 (x2, x1) = 1, ε(2)π0 (x, x) = 1, x1, x2, x ∈ H, (5.6)

which will be important in the n-ary case below.
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The multiplication of the commutation factors follows from different permu-
tations of the three terms:

f (y) ◦ f (x1) ◦ f (x2) = ε(2)π0 (y, x1) f (x1) ◦ f (y) ◦ f (x2)

= ε(2)π0 (y, x1) ε
(2)
π0 (y, x2) f (x1) ◦ f (x2) ◦ f (y)

= π
(2)
0 (x1, x2) f (y) ◦ f (x1 u x2)

= ε(2)π0 (y, x1 u x2)
(
π
(2)
0 (x1, x2) f (x1 u x2)

)
◦ f (y)

= ε(2)π0 (y, x1 u x2) f (x1) ◦ f (x2) ◦ f (y) , x1, x2, y ∈ H. (5.7)

Thus, it follows that the commutation factor multiplication is (and similarly
for the second place, cf. (2.5)–(2.6))

ε(2)π0 (y, x1 u x2) = ε(2)π0 (y, x1) ε
(2)
π0 (y, x2) , x1, x2, y ∈ H, (5.8)

which means that ε
(2)
π0 is a (binary) bicharacter on H(2), because for χ

(2)
y (x) ≡

ε
(2)
π0 (y, x) we have

χ(2)
y (x1)χ

(2)
y (x2) = χ(2)

y (x1 u x2) , x1, x2 ∈ H. (5.9)

Denote the group of bicharacters χ
(2)
y on H(2) with the multiplication (5.9)

by B(2)(H(2),k). We observe that the mapping π
(2)
0 → ε

(2)
π0 is a homomorphism of

Z2
(
H(2),k×

)
to B(2)(H(2),k) whose kernel is a subgroup of the 2-coboundaries

of H(2) over k× (for more details, see [27]).

5.2. n-ary projective representations. Here we consider some features
of n-ary projective representations and corresponding particular generalizations
of binary ε-commutativity.

Let H(n) =
〈
H | [ ]

(n)
u

〉
be an n-ary Abelian group with the totally com-

mutative multiplication [ ]
(n)
u , and the mapping f : H(n) → E(n) , where E(n) =〈

EndV | [ ](n)◦

〉
(for general polyadic representations, see [12] and references

therein). Here we suppose that V is a vector space over a field k, and [ ](n)◦ is an
n-ary associative product in EndV , which means that

f
[
[f (x1) , . . . , f (xn)](n)◦ , f (xn+1) , . . . , f (x2n−1)

](n)
◦

= f
[
f (x1) , [f (x2) , . . . , f (xn+1)]

(n)
◦ , f (xn+2) , . . . , f (x2n−1)

](n)
◦

· · ·

= f
[
f (x1) , f (x2) , . . . , f (xn−1) , [f (xn) , . . . , f (x2n−1)]

(n)
◦

](n)
◦
. (5.10)

Definition 5.1. A map f is an n-ary projective representation if

[f (x1) , . . . , f (xn)](n)◦ = π
(n)
0 (x1, . . . , xn) f

(
[x1, . . . , xn]

(n)
u

)
, x1, . . . , xn ∈ H,

(5.11)
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and π
(n)
0 :

n︷ ︸︸ ︷
H(n) × . . .×H(n) → k× is an n-ary (Schur-like) factor.

Proposition 5.2. The factors π
(n)
0 satisfy the n-ary 2-cocycle conditions

(cf. (5.1))

π
(n)
0 (x1, . . . , xn)π

(n)
0

(
[x1, . . . , xn]

(n)
u , xn+1, . . . , x2n−1

)
= π

(n)
0 (x2, . . . , xn+1)π

(n)
0

(
x1, [x2, . . . , xn+1]

(n)
u , xn+2, . . . , x2n−1

)
· · ·

= π
(n)
0 (xn, . . . , xn+1)π

(n)
0

(
x1, . . . , xn−1, [xn, . . . , x2n−1]

(n)
u

)
,

x1, . . . , x2n−1 ∈ H. (5.12)

Proof. These immediately follow from the n-ary associativity in EndV (5.10)
and (5.11).

Two n-ary factor systems are equivalent
{
π
(n)
0

}
λ∼
{
π̃
(n)
0

}
if there exists λ :

H(n) → k× such that

π̃
(n)
0 (x1, . . . , xn) =

λ (x1)λ (x2) . . . λ (xn)

λ
(

[x1, . . . , xn]
(n)
u

) π
(n)
0 (x1, . . . , xn) , x1, x2 ∈ H, (5.13)

and the π̃
(n)
0 -representation is given by f̃ (x) = λ (x) f (x), x ∈ H.

To understand how properly and uniquely to introduce the commutation fac-
tors for n-ary projective representations, we need to consider an n-ary analog of
(5.3) (see also (2.11)).

Proposition 5.3. The commutativity of a π
(n)
0 -representation is given by

(n!− 1) relations of the form

π
(n)
0

(
xσ(1), . . . , xσ(n)

)
[f (x1) , . . . , f (xn)](n)◦

= π
(n)
0 (x1, . . . , xn)

[
f
(
xσ(1)

)
, . . . , f

(
xσ(n)

)](n)
◦ , (5.14)

where σ ∈ Sn, σ 6= I, Sn is the symmetry permutation group on n elements.

Proof. Using the definition of the n-ary projective representation (5.11), we
obtain for the left-hand side and right-hand side of (5.14)

π
(n)
0

(
xσ(1), . . . , xσ(n)

)
π
(n)
0 (x1, . . . , xn) f

(
[x1, . . . , xn]

(n)
u

)
(5.15)

and

π
(n)
0 (x1, . . . , xn)π

(n)
0

(
xσ(1), . . . , xσ(n)

)
f
([
xσ(1), . . . , xσ(n)

](n)
u

)
, (5.16)

respectively.



Membership Deformation of Commutativity and Obscure n-ary Algebras 453

Since H(n) is totally commutative

[x1, . . . , xn]
(n)
u =

[
xσ(1), . . . , xσ(n)

](n)
u
, x1, . . . , xn ∈ H,σ ∈ Sn, (5.17)

then f
(

[x1, . . . , xn]
(n)
u

)
= f

([
xσ(1), . . . , xσ(n)

](n)
u

)
. Taking into account all non-

identical permutations, we get (n!− 1) relations in (5.14).

Corollary 5.4. To describe the noncommutativity of an n-ary projective rep-
resentation, we need to have not one relation between Schur factors (as in the
binary case (5.3) and (2.11)), but (n!− 1) relations (5.14). This leads to the
concept of the set of (n!− 1) commutation factors.

Definition 5.5. The commutativity of the n-ary projective representation

with the Schur-like factor π
(n)
0 (x1, . . . , xn) is governed by the set of (n!− 1)

commutation factors

ε
(n)
σ(1),...,σ(n) ≡ ε

(n)
σ(1),...,σ(n) (x1, . . . , xn) =

π
(n)
0 (x1, . . . , xn)

π
(n)
0

(
xσ(1), . . . , xσ(n)

) , (5.18)

[f (x1) , . . . , f (xn)](n)◦ = ε
(n)
σ(1),...,σ(n)

[
f
(
xσ(1)

)
, . . . , f

(
xσ(n)

)](n)
◦ , (5.19)

where σ ∈ Sn. We call all ε
(n)
σ(1),...,σ(n) as a commutation factor “vector” and

denote it by ~ε, where its components will be enumerated in lexicographic order.

Thus, each component of ~ε is responsible for the commutation of any two n-
ary monomials with different permutations σ, σ′ ∈ Sn since from (5.19) it follows
that[

f
(
xσ′(1)

)
, . . . , f

(
xσ′(n)

)](n)
◦

= ε
(n)
σ(1),...,σ(n)

(
xσ′(1), . . . , xσ′(n)

) [
f
(
xσ(1)

)
, . . . , f

(
xσ(n)

)](n)
◦ , (5.20)

It follows from (5.18) that an n-ary analog of the normalization property (5.6)
is

ε
(n)
σ(1),...,σ(n)

(
xσ′(1), . . . , xσ′(n)

)
ε
(n)
σ′(1),...,σ′(n)

(
xσ(1), . . . , xσ(n)

)
= 1, (5.21)

ε
(n)
1,...,n (x, . . . , x) = 1, (5.22)

where σ,σ′ ∈ Sn, x1, . . . , xn, x ∈ H.

In this notation, the binary commutation factor (5.4) is ε
(2)
π0 (x1, x2) =

ε
(2)
21 (x1, x2).

Example 5.6 (Ternary projective representation). Consider the minimal non-
binary case n = 3. The ternary projective representation of the Abelian ternary
group H(3) is given by

[f (x1) , f (x2) , f (x3)] = π0 (x1, x2, x3) f (x1 u x2 u x3) , x1, x2, x3 ∈ H, (5.23)
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where we denote π
(3)
0 ≡ π0, [ ](3)◦ ≡ [ ] and [x1, x2, x3]

(3)
u ≡ x1 u x2 u x3.

The ternary 2-cocycle conditions for the ternary Schur-like factor π0 now
become

π0 (x1, x2, x3)π0 (x1 u x2 u x3, x4, x5)

= π0 (x2, x3, x4)π0 (x1, x2 u x3 u x4, x5)

= π0 (x3, x4, x5)π0 (x1, x2, x3 u x4 u x5) . (5.24)

Thus, we obtain (3!− 1) = 5 different ternary commutation relations and the
corresponding 5-dimensional “vector” ~ε

[f (x1) , f (x2) , f (x3)] = εσ(1)σ(2)σ(3)
[
f
(
xσ(1)

)
, f
(
xσ(2)

)
, f
(
xσ(3)

)]
, (5.25)

ε132 =
π0 (x1, x2, x3)

π0 (x1, x3, x2)
, ε231 =

π0 (x1, x2, x3)

π0 (x2, x3, x1)
, ε213 =

π0 (x1, x2, x3)

π0 (x2, x1, x3)
,

ε312 =
π0 (x1, x2, x3)

π0 (x3, x1, x2)
, ε321 =

π0 (x1, x2, x3)

π0 (x3, x2, x1)
, x1, x2, x3 ∈ H, σ ∈ S3. (5.26)

6. n-ary double commutative algebras

6.1. n-ary ε-commutative algebras. Here we introduce grading noncom-
mutativity for n-ary algebras (“n-ary coloring”), which is closest to the binary
“coloring”case (2.3). We are exploiting an n-ary analog of the (Schur) factor (2.9)
and its relation (2.11) by means of the n-ary projective representation theory from
Section 5.

Let A(n) =
〈
A | [ ](n) ,+

〉
be an associative n-ary algebra [6, 11, 17] over a

binary field k (with the binary addition) having zero z ∈ A and unit e ∈ A if A(n)

is unital (for polyadic algebras with all nonbinary operations, see [13]). An n-ary

graded algebra A(n)
G (an n-ary G-graded k-algebra) is a direct sum of subalgebras

A(n)
G =

⊕
g∈GAg, where G = 〈G | +′〉 is a (binary Abelian) grading group and

the set n-ary multiplication “respects the gradation”

[Ag1 , . . . , Agn ](n) ⊆ Ag1+′...+′gn , g1, . . . , gn ∈ G. (6.1)

As in the binary case (2.2), the elements from Ag ⊂ A are homogeneous of
degree a′ = g ∈ G.

It is natural to start our n-ary consideration from the Schur-like factors (5.12)
which generalize (2.10) and (5.1).

Definition 6.1. In an n-ary graded algebra A(n)
G , the n-ary Schur-like factor

is an n-place function on gradings π(n) :

n︷ ︸︸ ︷
G× . . .×G → A satisfying the n-ary

cocycle condition (cf. (2.10) and (5.12)):

π(n)
(
a′1, . . . , a

′
n

)
π(n)

([
a′1, . . . , a

′
n

](n)
, a′n+1, . . . , a

′
2n−1

)
= π(n)

(
a′2, . . . , a

′
n+1

)
π(n)

(
a′1,
[
a′2, . . . , a

′
n+1

](n)
, a′n+2, . . . , a

′
2n−1

)
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· · ·

= π(n)
(
a′n, . . . , a

′
n+1

)
π(n)

(
a′1, . . . , a

′
n−1,

[
a′n, . . . , a

′
2n−1

](n))
,

a′1, . . . , a
′
2n−1 ∈ G. (6.2)

There are many possible ways to introduce noncommutativity for n-ary al-

gebras [9, 17]. We propose a “projective version” of noncommutativity in A(n)
G

which naturally follows from the n-ary projective representations (5.18) and can
be formulated in terms of the Schur-like factors as in (2.11) and (5.14).

Definition 6.2. An n-ary graded algebra A(n)
G is called π-commutative if the

(n!− 1) relations (cf. (5.14))

π(n)
(
a′σ(1), . . . , a

′
σ(n)

)
[a1, . . . , an](n)

= π(n)
(
a′1, . . . , a

′
n

) [
aσ(1), . . . , aσ(n)

](n)
(6.3)

hold for all a1, . . . , an ∈ A, and σ ∈ Sn, σ 6= I, where π(n) are the n-ary Schur-like
factors satisfying (6.2).

Two n-ary Schur-like factor systems are equivalent
{
π(n)

} λ̃∼
{
π̃(n)

}
if there

exists λ̃ : A(n)
G → k× such that (cf. (5.13))

π̃(n)
(
a′1, . . . , a

′
n

)
=

λ̃ (a′1) . . . λ̃ (a′n)

λ̃
(

[a′1, . . . , a
′
n](n)

)π(n) (a′1, . . . , a′n) , a′1, . . . , a
′
2 ∈ G. (6.4)

The quotient, by this equivalence relation
{
π(n)

}
/

λ̃∼, is the corresponding
multiplier group as in the binary case [21].

Let ϕ ∈ AutG and
{
π(n)

}
be a factor system, then its pullback

π
(n)
∗
(
a′1, . . . , a

′
n

)
= π(n)

(
ϕ
(
a′1
)
, . . . , ϕ

(
a′n
))

(6.5)

is also a factor system
{
π
(n)
∗

}
. In the n-ary case, the “homotopic” analog of (6.5)

is possible

π
(n)
∗∗
(
a′1, . . . , a

′
n

)
= π(n)

(
ϕ1

(
a′1
)
, . . . , ϕn

(
a′n
))
, (6.6)

where ϕ1, . . . , ϕn ∈ AutG such that
{
π
(n)
∗∗

}
is also a factor system.

Comparing (6.3) with the binary π-commutativity (2.11), we observe that the

most general description of n-ary graded algebras A(n)
G can be achieved by using

at least (n!− 1) commutation factors.

Definition 6.3. An n-ary graded algebra A(n)
G is ε(n)-commutative if there

are (n!− 1) commutation factors

ε
(n)
σ(1),...,σ(n) ≡ ε

(n)
σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
=

π(n) (a′1, . . . , a
′
n)

π(n)
(
a′σ(1), . . . , a

′
σ(n)

) , (6.7)
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[a1, . . . , an](n) = ε
(n)
σ(1),...,σ(n)

[
aσ(1), . . . , aσ(n)

](n)
, (6.8)

where σ ∈ Sn, σ 6= I, and the factors π(n) satisfy (6.2). The set of ε
(n)
σ(1),...,σ(n) is a

commutation factor “vector” −→ε of the algebra A(n)
G having (n!− 1) components.

Each component of the “vector” −→ε is responsible for the commutation of two

n-ary monomials in A(n)
G such that from (6.8) we have

[
aσ′(1), . . . , aσ′(n)

](n)
= ε

(n)
σ(1),...,σ(n)

(
a′σ′(1), . . . , a

′
σ′(n)

) [
aσ(1), . . . , aσ(n)

](n)
(6.9)

with permutations σ, σ′ ∈ Sn.

It follows from (5.18) that an n-ary analog of the normalization property (5.6)
is

ε
(n)
σ(1),...,σ(n)

(
a′σ′(1), . . . , a

′
σ′(n)

)
ε
(n)
σ′(1),...,σ′(n)

(
a′σ(1), . . . , a

′
σ(n)

)
= 1, (6.10)

ε
(n)
1,...,n

(
a′, . . . , a′

)
= 1, (6.11)

where σ,σ′ ∈ Sn, a′1, . . . , a
′
n, a
′ ∈ G.

If ϕ ∈ AutG and
{
π
(n)
∗

}
is a pullback of

{
π(n)

}
(6.5), then the corresponding

ε
(n)
∗σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
=

π
(n)
∗ (a′1, . . . , a

′
n)

π
(n)
∗

(
a′σ(1), . . . , a

′
σ(n)

) (6.12)

are commutation factors as well (if k is algebraically closed by analogy with [21]).

The same is true for their “homotopic” analog
{
π
(n)
∗∗

}
(6.6).

Definition 6.4. A factor set
{
π(n)

}
is called totally symmetric if −→ε is the

unit commutation factor “vector”such that all of its (n!− 1) components are
identities (in k)

ε
(n)
σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
= 1, σ ∈ Sn, σ 6= I, a′1, . . . , a

′
n ∈ G. (6.13)

Suppose we have two factor sets
{
π
(n)
1

}
and

{
π
(n)
2

}
which correspond to the

same commutation factor ε(n) in A(n)
G such that

exε
(n)
σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
=

π
(n)
1 (a′1, . . . , a

′
n)

π
(n)
1

(
a′σ(1), . . . , a

′
σ(n)

)
=

π
(n)
2 (a′1, . . . , a

′
n)

π
(n)
2

(
a′σ(1), . . . , a

′
σ(n)

) . (6.14)
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We can always choose the same order for the commutation factor “vector” com-

ponents σ. Define a new factor set
{
π
(n)
12

}
by

π
(n)
12

(
a′1, . . . , a

′
n

)
=
π
(n)
1 (a′1, . . . , a

′
n)

π
(n)
2 (a′1, . . . , a

′
n)
, a′1, . . . , a

′
n ∈ G. (6.15)

Then
{
π
(n)
12

}
becomes totally symmetric, because the corresponding commu-

nication factor is

ε
(n)
12,σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
=

π
(n)
12 (a′1, . . . , a

′
n)

π
(n)
12

(
a′σ(1), . . . , a

′
σ(n)

) = 1 (6.16)

as follows from (6.14)–(6.15). Therefore, as in the binary case, if the grading
group G is finitely generated and k is algebraically closed, then the communication
factor ε(n) is constructed from the unique multiplier

{
π(n)

}
[21].

The are two possible differences from the simple binary case (2.13), where for
identity commutation factor the symmetry condition (2.12) is sufficient:

1) Not all ε(n) need to be equal to the identity.

2) Some arguments of the Schur-like factors π(n) can be intact.

Definition 6.5. An ε(n)-commutative n-ary graded algebra A(n)
G is called

m-partially (or partially) commutative if exactly m commutation factors (with
permutations σ̃) from the (n!− 1) total are equal to 1,

ε
(n)
σ̃(1),...,σ̃(n)

(
a′1, . . . , a

′
n

)
= 1, #σ̃ ≤ #σ, σ ∈ Sn, a′1, . . . , a

′
n ∈ G, (6.17)

where we denote #σ̃ = m, #σ = n! − 1. If #σ̃ = #σ, then A(n)
G is totally

commutative, see (6.13).

In an m-partially commutative n-ary graded algebra A(n)
G , the Schur-like fac-

tors π(n) satisfy m additional symmetry conditions (cf. (2.12))

π(n)
(
a′1, . . . , a

′
n

)
= π(n)

(
a′σ̃(1), . . . , a

′
σ̃(n)

)
, #σ̃ ≤ #σ, σ ∈ Sn. (6.18)

Example 6.6 (Ternary ε-commutative algebra). Let A(3)
G = 〈A | [ ] ,+〉 be

a ternary associative G-graded algebra over k. The ternary Schur-like factor
π0 (a′1, a

′
2, a
′
3) satisfies the ternary 2-cocycle conditions (cf. (5.24))

π(3)
(
a′1, a

′
2, a
′
3

)
π(3)

(
a′1 + a′2 + a′3, a

′
4, a
′
5

)
= π(3)

(
a′2, a

′
3, a
′
4

)
π(3)

(
a′1, a

′
2 + a′3 + a′4, a

′
5

)
= π(3)

(
a′3, a

′
4, a
′
5

)
π(3)

(
a′1, a

′
2, a
′
3 + a′4 + a′5

)
, a′1, . . . , a

′
5 ∈ G. (6.19)
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We can introduce (3!− 1) = 5 different ternary commutation relations explic-
itly,

[a1, a2, a3] = ε
(3)
σ(1)σ(2)σ(3)

[
aσ(1), aσ(2), aσ(3)

]
, a1, a2, a3 ∈ A, σ ∈ S3, (6.20)

ε
(3)
132 =

π(3) (a′1, a
′
2, a
′
3)

π(3) (a′1, a
′
3, a
′
2)
, ε

(3)
231 =

π(3) (a′1, a
′
2, a
′
3)

π(3) (a′2, a
′
3, a
′
1)
, ε

(3)
213 =

π(3) (a′1, a
′
2, a
′
3)

π(3) (a′2, a
′
1, a
′
3)
,

ε
(3)
312 =

π(3) (a′1, a
′
2, a
′
3)

π(3) (a′3, a
′
1, a
′
2)
, ε

(3)
321 =

π(3) (a′1, a
′
2, a
′
3)

π(3) (a′3, a
′
2, a
′
1)
, a′1, a

′
2, a
′
3 ∈ G. (6.21)

The 1-partial commutativity in A(3)
G can be realized if, for instance,

π(3)
(
a′1, a

′
2, a
′
3

)
= π(3)

(
a′1, a

′
3, a
′
2

)
, a′1, a

′
2, a
′
3 ∈ G, (6.22)

and in this case, ε
(3)
132 = 1 so that we obtain one commutativity relation

[a1, a2, a3] = [a1, a3, a2] , a1, a2, a3 ∈ A, (6.23)

while the other 4 relations in (6.20) will be ε-commutative.

6.2. Membership deformed n-ary algebras. Now we consider n-ary
algebras over obscure sets as their underlying sets, where each element of them
is endowed with the membership function µ as a degree of truth (see Section 3).

Definition 6.7. An obscure n-ary algebra A(n) (µ) =
〈
A(µ) | [ ](n) ,+

〉
is an

n-ary algebra A(n) over k having an obscure set A(µ) = {(a|µ (a)) , a ∈ A,µ > 0}
as its underlying set (see (3.1)), and where the membership function µ (a) satisfies

µ (a1 + a2) ≥ min {µ (a1) , µ (a2)} , (6.24)

µ ([a1, . . . , an]n) ≥ min {µ (a1) , . . . , µ (an)} , (6.25)

µ (ka) ≥ µ (a) , a, ai ∈ A, k ∈ k, i = 1, . . . , n. (6.26)

Definition 6.8. An obscure G-graded n-ary algebra A(n)
G (µ) is a direct sum

decomposition (cf. (3.8)),

A(n)
G (µ) =

⊕
g∈G
A(n)
g (µg) , (6.27)

where A(µ) =
⋃
g∈GA

(µg)
g , A(µg) = {(a|µg (a)) , a ∈ Ag, µg = (0, 1]}, and the joint

membership function µ is given by (3.9).

In the obscure totally commutative n-ary algebra A(n)
G (µ) (for homogeneous

elements) we have (n!− 1) commutativity relations (cf. (5.17))

[a1, . . . , an](n) =
[
aσ(1), . . . , aσ(n)

](n)
, a1, . . . , an ∈ A(µ), σ ∈ Sn, σ 6= I. (6.28)

Let us consider a “linear” (in µ) deformation of (6.28) analogous to the binary
case (4.1).
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Definition 6.9. An obscure membership deformed n-ary algebra is

A(n)
∗G (µ) =

〈
A(µ) | [ ](n)∗ ,+

〉
in which there are (n!− 1) possible noncommutativity relations

µa′n (an) [a1, . . . , an](n)∗ = µa′
σ(n)

(
aσ(n)

) [
aσ(1), . . . , aσ(n)

](n)
∗ ,

a1, . . . , an ∈ A(µ), a′n, a
′
σ(n) ∈ G, σ ∈ Sn, σ 6= I. (6.29)

Since µ > 0, we can have

Definition 6.10. The (n!− 1) membership commutation factors in A(n)
∗G (µ)

are defined by

ε
(n)
σ(n)

(
a′n, a

′
σ(n), an, aσ(n)

)
=
µa′

σ(n)

(
aσ(n)

)
µa′n (an)

, a′n, a
′
σ(n) ∈ G, σ ∈ Sn, σ 6= I, (6.30)

and the relations (6.29) become

[a1, . . . , an](n)∗ = ε
(n)
σ(n)

(
a′n, a

′
σ(n), an, aσ(n)

) [
aσ(1), . . . , aσ(n)

](n)
∗ . (6.31)

These definitions are unique if we require:

1) for connection, only two monomials with different permutations;

2) membership “linearity” (in µ);

3) compatibility with the binary case (4.2)–(4.3).

Example 6.11. For the obscure membership deformed ternary algebra

A(3)
∗G (µ) =

〈
A(µ) | [ ](3)∗ ,+

〉
,

we obtain

[a1, a2, a3] = ε
(3)
σ(1)σ(2)σ(3)

[
aσ(1), aσ(2), aσ(3)

](3)
∗ , a1, a2, a3 ∈ A, σ ∈ S3, (6.32)

ε
(3)
132 = ε

(3)
312 =

µa′3 (a3)

µa′2 (a2)
, ε

(3)
231 = ε

(3)
321 =

µa′3 (a3)

µa′1 (a1)
, ε

(3)
213 = 1, , a′1, a

′
2, a
′
3 ∈ G,

which means that it is 1-partially commutative (see (6.17)) and has only 2 inde-
pendent membership commutation factors (cf. the binary case (4.3)).

We now provide a sketch construction of the n-ary ε-commutative algebras
(6.8) membership deformation (see Subsection 4.2 for the binary case).
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Definition 6.12. An obscure membership deformed n-ary π-commutative

algebra over k is A(n)
?G (µ) =

〈
A(µ) | [ ](n)? ,+

〉
in which the following (n!− 1)

noncommutativity relations are valid:

π(n)
(
a′σ(1), . . . , a

′
σ(n)

)
µa′n (an) [a1, . . . , an](n)?

= π(n)
(
a′1, . . . , a

′
n

)
µa′

σ(n)

(
aσ(n)

) [
aσ(1), . . . , aσ(n)

](n)
?
,

ai ∈ A(µ), a′i ∈ G, σ ∈ Sn, σ 6= I, (6.33)

where π(n) are n-ary Schur-like factors satisfying the 2-cocycle conditions (6.2).

Definition 6.13. An algebra A(n)
?G (µ) is called a double ε

(n)
π /ε

(n)
µ -commuta-

tive algebra if

[a1, . . . , an](n)?

= ε
(n)
σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
ε
(n)
σ(n)

(
a′n, a

′
σ(n), an, aσ(n)

) [
aσ(1), . . . , aσ(n)

](n)
?
, (6.34)

ε
(n)
σ(1),...,σ(n)

(
a′1, . . . , a

′
n

)
=

π(n) (a′1, . . . , a
′
n)

π(n)
(
a′σ(1), . . . , a

′
σ(n)

) , (6.35)

ε
(n)
σ(n)

(
a′n, a

′
σ(n), an, aσ(n)

)
=
µa′

σ(n)

(
aσ(n)

)
µa′n (an)

, a1, . . . , an, aσ(1), . . . , aσ(n) ∈ A(µ),

a′1, . . . , a
′
n, a
′
σ(1), . . . , a

′
σ(n) ∈ G, σ ∈ Sn, σ 6= I, (6.36)

where ε
(n)
π is the n-ary grading commutation factor (6.7) and ε

(n)
µ is the n-ary

membership commutation factor (in our definition (6.30)).

This procedure can be considered to be the membership deformation of the
given ε-commutative algebra (6.8), which corresponds to the first version of the
binary commutative algebra deformation as in (4.12) and leads to a nonassocia-
tive algebra in general. To achieve associativity, one should consider the second
version of the algebra deformation as in the binary case (4.16): to introduce a

different n-ary multiplication [ ]
(n)
~ such that the product of commutation factors

ε(n)ε(n) satisfies the n-ary 2-cocycle-like conditions, while the n-ary noncocycle
commutation factor satisfies the “membership deformed cocycle-like” conditions
analogously to (4.17)–(4.19).
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[5] R. Bělohlávek, Fuzzy relational systems: foundations and principles, Springer, New
York, 2002.

[6] R. Carlsson, N -ary algebras, Nagoya Math. J. 78 (1980), 45–56.

[7] T. Covolo, J. Grabowski, and N. Poncin, The category of Zn
2 -supermanifolds, J.

Math. Phys. 57 (2016), 073503, 16.

[8] E.C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), 241–262.

[9] J.A. de Azcarraga and J.M. Izquierdo, n-Ary algebras: A review with applications,
J. Phys. A43 (2010), 293001.

[10] A. de Goursac, T. Masson, and J.-C. Wallet, Noncommutative ε-graded connections,
J. Noncommut. Geom. 6 (2012), 343–387.

[11] T. de Oliveira, Modular systems, Univ. Lisboa Rev. Fac. Ci. A (2) 8 (1960), 155–167.

[12] S. Duplij, Polyadic algebraic structures and their representations, in Exotic Alge-
braic and Geometric Structures in Theoretical Physics, (Ed. S. Duplij), Nova Pub-
lishers, New York, 2018, 251–308. Available from: https://arxiv.org/abs/1308.
4060.

[13] S. Duplij, Arity shape of polyadic algebraic structures, Zh. Mat. Fiz. Anal. Geom.
15 (2019), 3–56.

[14] R. Frucht, Zur Darstellung endlicher Abelscher Gruppen durch Kollineationen,
Math. Z. 63 (1955), 145–155.

[15] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8–96.

[16] T.Y. Lam, A first course in noncommutative rings, Vol. 131 of Graduate Texts in
Mathematics, Second edition, Springer, New York, 2001.

[17] P.W. Michor and A.M. Vinogradov, n-Ary Lie and associative algebras, Rend. Sem.
Mat. Univ. Pol. Torino 54 (1996), 373–392.

[18] S. Montgomery, Constructing simple Lie superalgebras from associative graded al-
gebras, J. Alg. 195 (1997), 558–579.

[19] W. Nahm, V. Rittenberg, and M. Scheunert, The classification of graded Lie alge-
bras, Phys. Lett. 61B (1976), 383–391.

[20] V. Rittenberg and D. Wyler, Generalized superalgebras, Nuclear Phys. B 139
(1978), 189–202.

[21] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20 (1979), 712–720.

[22] N.J.J. Smith, Vagueness and degrees of truth, Oxford University Press, Oxford,
2008.

[23] The Handbooks of Fuzzy Sets Series, 7: Fundamentals of fuzzy sets, (Eds. D. Dubois
and H. Prade), Kluwer, Boston, 2000.

[24] H. Tilgner, Graded generalizations of Weyl and Clifford algebras, J. Pure Appl. Alg.
10 (1977), 163–168.

https://arxiv.org/abs/1308.4060
https://arxiv.org/abs/1308.4060


462 Steven Duplij

[25] H.-J. Zimmermann, Fuzzy set theory and its applications, Second edition, Springer,
New York, 2011.
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Деформацiя приналежностi комутативностi та
нечiткi n-арнi алгебри

Steven Duplij

Запропоновано загальний механiзм “порушення” комутативностi в
алгебрах: якщо базова множина приймається не за чiтку множину, а ско-
рiше за нечiтку, функцiя приналежностi, що вiдображає ступiнь iстин-
ностi приналежностi елемента до множини, може бути включена в ко-
мутацiйнi спiввiдношення. Спецiальнi “деформацiї” комутативностi i ε-
комутативностi вводяться таким чином, що рiвнi ступенi iстинностi при-
зводять до “недеформованому” випадку. Ми також наводимо схеми “де-
формування” ε-алгебр Лi i алгебри Вейля. Далi, наведенi вище констру-
кцiї поширюються на n-арнi алгебри, для яких вивчаються проективнi
подання та ε-комутативнiсть.

Ключовi слова: майже комутативна алгебра, неясна алгебра, дефор-
мацiя приналежностi, нечiтка множина, функцiя приналежностi, n-арна
алгебра, алгебра Лi, проективне подання

mailto:douplii@uni-muenster.de, sduplij@gmail.com

	Introduction
	Preliminaries
	Membership function and obscure algebras
	Membership deformation of commutativity
	Deformation of commutative algebras
	Deformation of epsilon-commutative algebras.
	Double epsilon-Lie algebras.

	Projective representations
	Binary projective representations.
	n-ary projective representations.

	n-ary double commutative algebras
	n-ary epsilon-commutative algebras.
	Membership deformed n-ary algebras.


